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Abstract
The inequality 〈p2〉 �

(
L + 1

2

)2〈r−2〉, with L being the grand orbital quantum
number, and its conjugate relation for (〈r2〉, 〈p−2〉) are shown to be fulfilled in
the D-dimensional central problem. Their use has allowed us to improve the
Fisher-information-based uncertainty relation (IρIγ � const) and the Cramer–
Rao inequalities (〈r2〉Iρ � D2; 〈p2〉Iγ � D2). In addition, the kinetic energy
and the radial expectation value 〈r2〉 are shown to be bounded from below by
the Fisher information in position and momentum spaces, denoted by Iρ and
Iγ , respectively.

PACS numbers: 03.65.Ca, 03.65.Ta, 89.70.+c, 31.15.Ew, 02.50.Cw

1. Introduction

The essential inadequacy of the classical position and momentum concepts for a single particle
in a D-dimensional physical system is quantum mechanically shown by the celebrated variance-
based Heisenberg relation [1, 2] and its moment generalizations [3–6]. As well, this can
be done in a much more appropriate and stringent manner by other position–momentum
uncertainty relations which use information-theoretic quantities of global type as uncertainty
measures: the entropic or Shannon-entropy-based [7, 8], Renyi-entropy-based [3, 9] and
Tsallis-entropy-based [10] inequalities.

A qualitatively different position–momentum uncertainty relation has been recently
suggested [11–13] but not yet set up for general systems. In contrast to the previous
inequalities, it is based on gradient-like uncertainty measures (so, of local, as opposed to
global type): the Fisher informations [14–16], Iρ and Iγ , of the single-particle position and
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momentum densities ρ(�r) and γ (�p), respectively. The position Fisher information Iρ is given
by

Iρ =
∫

R
D

| �∇Dρ(�r)|2
ρ(�r) dDr = 4

∫
R

D

| �∇D

√
ρ(�r)|2 dDr.

This shift-invariance Fisher quantity, which increases with the concentration of the single-
particle density, is a very fertile concept in large part because of its flexibility and multiple
meanings [16]. It is called the ‘Fisher channel capacity’ [16], although for brevity we simply
call it ‘Fisher information’ here. It does not only measure the position uncertainty of the
particle but it is closely connected to a wide variety of physical quantities (e.g. kinetic [16–19]
and Weiszäcker [16, 18, 20] energies) and it has been used to understand numerous quantum-
mechanical phenomena such as the spectral avoided-crossings of atoms in strong external
fields [21] and the correlation properties of two-electron systems [22, 23]. Moreover, the
Fisher information is the basic variable of the principle of extreme physical information
[16, 23–26] which has been used to obtain various fundamental equations of motion in physics
[16, 26]. It is also being used to rederive classical thermodynamics without the usual concept
of Boltzmann’s entropy [27, 28].

Finally, let us mention that this information-theoretic quantity and its quantum extension
[29], not yet sufficiently well known for physicists, has been used to set up a number of relevant
inequalities (such as, e.g., Cramer–Rao [20, 29–34] and uncertainty relations [11, 13, 29, 31,
34–36]). In D-dimensional physics, the Fisher information of single-particle systems has been
only recently determined in closed form in terms of the quantum numbers characterizing the
involved physical state for both position and momentum spaces [37].

The new uncertainty relation has the form

IρIγ � K(D), (1)

where the K(D) is a constant to be determined. It is known that K(1) = 4 for general
monodimensional systems for even wavefunctions [12]. Moreover, the uncertainty character
of the product of the position and momentum Fisher distributions is shown by [35]

IρIγ � 16

[
1 − (2L + 1)|m|

L(L + 1) − 1
2 (D − 1)(D − 3)

]2

〈r2〉〈p2〉, (2)

for central potentials, where the grand orbital quantum number is L = l + (D − 3)/2, and
(l,m) are the orbital and magnetic quantum numbers.

Then, the consideration of the modified Heisenberg inequality 〈r2〉〈p2〉 � D2/4 (valid
for general systems) [38–41] into (2) have led to the Fisher-product lower bound [35]

IρIγ � 4D2

[
1 − (2L + 1)|m|

L(L + 1) − 1
2 (D − 1)(D − 3)

]2

≡ K1(l,m;D). (3)

The lower bound D2/4 to the Heisenberg product has been just refined for central
potentials [13] as

〈r2〉〈p2〉 �
(
L + 3

2

)2
, (4)

so that it, together with (2), produces the following improved value for K(D) [13]:

IρIγ � 16

[
1 − (2L + 1)|m|

L(L + 1) − 1
2 (D − 1)(D − 3)

]2 (
L +

3

2

)2

≡ K2(l,m;D). (5)
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On the other hand, there exist two other relevant inequalities which involve the Fisher
information in a given space and a radial expectation value in the same (Cramer–Rao) or the
conjugate (Stam) space. They are the Stam uncertainty relations [6, 30, 42]

Iρ � 4〈p2〉; Iγ � 4〈r2〉, (6)

and the Cramer–Rao inequalities [20, 30]

〈r2〉Iρ � D2; 〈p2〉Iγ � D2. (7)

There are three main achievements in this paper for D-dimensional single-particle systems
with central potentials: to further improve the lower bound K2(l,m;D) given by (5) for the
Fisher uncertainty product IρIγ , to refine the Cramer–Rao inequalities and to find lower
bounds to the kinetic energy (which together with the Stam inequality allows one to bound
this quantity in both senses) and to the radial expectation value 〈r2〉. These results have been
possible because we have improved the radial-uncertainty-like inequalities which involve the
radial expectation values (〈p2〉, 〈r−2〉) and (〈r2〉, 〈p−2〉).

The structure of the paper is the following. First, in section 2, the wave equation of a
particle in a central potential is briefly discussed in D-dimensional configuration space, and
some useful notions and notation used throughout the paper are given. Then, in section 3, the
basic radial-uncertainty-like inequalities are derived. The uncertainty relation based on the
Fisher informations in position and momentum spaces is refined in section 4. We express
the improvement of the Cramer–Rao inequalities and the bounds to the kinetic energy and
the radial expectation value 〈r2〉 in section 5. Then, we devote section 6 to a numerical
study of the Fisher-information-based uncertainty relation for two illustrative examples: the
harmonic oscillator and the hydrogen atom. Finally, some conclusions are given. Atomic
units (e = h̄ = me = 1) are used throughout the paper.

2. D-dimensional central potentials

The Schrödinger equation of a D-dimensional particle in the central potential VD(r) is[− 1
2
�∇2

D + VD(r)
]
ψD(�r) = EDψD(�r),

where the position vector �r has the D polar hyperspherical coordinates (r, θ1, θ2, . . . , θD−1) ≡
(r,�D−1), and �∇2

D denotes the Laplacian operator. See [43–47] for a detailed analysis of
the D-dimensional problem for central potentials and [13, 35] for a better understanding of
the notation and definitions used in this work. Let us here describe the wavefunctions of the
problem as

ψE,l,{µ}(�r) = RE,l(r)Y l,{µ}(�D−1), (8)

where Y-functions denote the hyperspherical harmonics characterized by the D − 1
hyperangular quantum numbers (l ≡ µ1, µ2, . . . , µD−1) ≡ (l, {µ}), which are natural
numbers with values l = 0, 1, 2, . . . , and l ≡ µ1 � µ2 � · · · µD−2 � |µD−1| ≡ |m|. These
hyperspherical harmonics are the eigenfunctions of the squared hyperangular momentum
operator corresponding to the eigenvalues l(l + D − 2) = L(L + 1) − (D − 1)(D − 3)/4.

The radial wavefunctions REl(r) are the solutions of the equation[
−1

2

d2

dr2
− D − 1

r

d

dr
+

l(l + D − 2)

2r2
+ VD(r)

]
RE,l(r) = EDRE,l(r).

This equation transforms into the reduced radial Schrödinger equation[
−1

2

d2

dr2
+

L(L + 1)

2r2
+ VD(r)

]
uE,l(r) = EDuE,l(r)



1848 J S Dehesa et al

by means of the change

RE,l → uE,l : uE,l = r(D−1)/2RE,l(r). (9)

The normalization to unity of the wavefunctions imposes that the reduced radial wavefunctions
uE,l(r) are normalized as∫ ∞

0
u2

E,l(r) dr = 1,

once we take into account the known orthonormalization relations of the hyperspherical
harmonics [43, 45, 47].

The probability density of the D-dimensional particle in position space is given by

ρE,l,{µ}(�r) = |ψE,l,{µ}(�r)|2 = R2
E,l(r)|Yl,{µ}(�D−1)|2

= r1−Du2
E,l(r)|Yl,{µ}(�D−1)|2. (10)

The spreading of this density all over the D-dimensional space is usually quantified by means
of a radial expectation value

〈f (r)〉 =
∫

R
D

f (r)ρE,l,{µ}(�r) d�r =
∫ ∞

0
f (r)u2

E,l(r) dr

and, more appropriately, by the use of an information-theoretic quantity of global (Renyi,
Shannon) and local (Fisher) types. The probability density of the particle in momentum space
γE,l,{µ}(�p) = |ψ̃E,l,{µ}(�p)|2, ψ̃ denoting the Fourier transform of ψ , can be separated out in
radial and angular parts similarly as for the position density following (8) and (10).

3. Radial-uncertainty-like inequalities

Here, we shall derive the conjugate uncertainty inequalities which link the radial expectation
values (〈p2〉, 〈r−2〉) and (〈r2〉, 〈p−2〉). We know [35] that the momentum expectation value
〈p2〉 can be decomposed for central potentials in the form

〈p2〉 = JR(D) +
[
L(L + 1) − 1

4 (D − 1)(D − 3)
] 〈r−2〉, (11)

with the radial integral

JR(D) =
∫ ∞

0

[
dRE,l(r)

dr

]2

rD−1 dr. (12)

The non-negativity of this integral straightforwardly leads [35] to the following radial-
uncertainty-like relation:

〈p2〉 �
[
L(L + 1) − 1

4 (D − 1)(D − 3)
] 〈r−2〉. (13)

The corresponding inequality in momentum space, following a parallel procedure, is [35]

〈r2〉 �
[
L(L + 1) − 1

4 (D − 1)(D − 3)
] 〈p−2〉. (14)

The two expressions above can be improved by taking into account the change (9) in the
radial integral (12). Then, one obtains

JR(D) =
∫ ∞

0

[
(u′)2 +

(
D − 1

2

)2

r−2u2 − (D − 1)r−1uu′
]

dr

=
∫ ∞

0
(u′)2dr +

1

4
(D − 1)(D − 3)〈r−2〉, (15)
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where we have used the equality∫ ∞

0
r−1uu′ dr = 1

2

∫ ∞

0
r−2u2 dr

provided that u(r) ∼ rL+1 at r = 0 (which implies that D > 2), which occurs for any central
potential satisfying |V (r)| � Cr−2 at r → 0.

Then, the momentum expectation value given by (11) together with (15) transforms into

〈p2〉 =
∫ ∞

0
(u′)2 dr + L(L + 1)〈r−2〉,

which, due to the non-negativity of the integral, leads to the inequality

〈p2〉 � L(L + 1)〈r−2〉. (16)

A similar procedure in momentum space allows us to obtain

〈r2〉 � L(L + 1)〈p−2〉. (17)

These two radial-uncertainty-like relations improve the corresponding inequalities (13)
and (14). A further refinement of these two relations (16) and (17) can be obtained from the
inequality ∫ ∞

0

(
u′ − λ

r
u

)2

dr � 0,

with the real parameter λ. Working out this integral one has the λ-inequality

〈r−2〉λ2 − 〈r−2〉λ + 〈p2〉 − L(L + 1)〈r−2〉 � 0,

whose negative discriminant gives rise to the inequality

〈p2〉 �
(
L + 1

2

)2 〈r−2〉. (18)

The corresponding conjugate relation is

〈r2〉 �
(
L + 1

2

)2 〈p−2〉. (19)

The last two radial-uncertainty-like inequalities improve for central potentials the
corresponding general Faris [48] and Pitt–Beckner [42, 49, 50] inequalities, and the similar
central potential lower bounds recently found [13, 35] as well as inequalities (16) and (17). In
addition, they extend similar expressions found by other authors [19, 38, 39, 41].

4. Fisher-information-based uncertainty relation

Here, we shall refine the Fisher-information-based uncertainty relation given by (5). Recently,
it has been found [35] that the position and momentum Fisher informations Iρ and Iγ ,
respectively, can be expressed in terms of the radial expectation values 〈rk〉 and 〈pk〉, k = −2
and 2, as

Iρ = 4〈p2〉 − 2(2L + 1)|m|〈r−2〉, Iγ = 4〈r2〉 − 2(2L + 1)|m|〈p−2〉.
The combination of these two exact expressions with the radial-uncertainty-like relations

(18) and (19) allows us to obtain

Iρ � 4

(
1 − 2|m|

2L + 1

)
〈p2〉, (20)

Iγ � 4

(
1 − 2|m|

2L + 1

)
〈r2〉. (21)
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The multiplication of (20) and (21) leads to the following relationship between the Fisher
and Heisenberg uncertainty products:

IρIγ � 16

(
1 − 2|m|

2L + 1

)2

〈r2〉〈p2〉,

which improves the corresponding relation (2).
Then, taking into account the modified Heisenberg relation for central potentials given by

(4) one finally has the Fisher-information-based uncertainty relation

IρIγ � 16

(
1 − 2|m|

2L + 1

)2 (
L +

3

2

)2

≡ K3(l,m;D), (22)

which further improves the inequality (5) since K3 � K2.
According to (22), the lower bound to the Fisher product IρIγ is equal to 4D2 for states s

(i.e. with l = 0) and to 16(l + D/2)2 for levels with m = 0. Moreover, for a three-dimensional
single-particle system one has

IρIγ � 16

(
1 − 2|m|

2l + 1

)2 (
l +

3

2

)2

,

so that IρIγ � 36 for its ground state (l = m = 0).

5. Cramer–Rao inequality and kinetic energy bounds

Here, we will improve for central potentials the general Cramer–Rao inequalities (7) and then
we will obtain lower bounds for the position and momentum Fisher informations in terms of
〈p2〉 and 〈r2〉, respectively. The latter provide us with lower bounds to the kinetic energy and
the radial expectation value 〈r2〉 in terms of these local information-theoretic quantities.

The Cramer–Rao inequality in position space can be, according to (20), bounded from
below as

〈r2〉Iρ � 4

(
1 − 2|m|

2L + 1

)
〈r2〉〈p2〉.

Then, taking into account the D-dimensional Heisenberg relation (4) one has

〈r2〉Iρ � 4

(
1 − 2|m|

2L + 1

) (
L +

3

2

)2

. (23)

In a similar manner, according to (21) and (4), the Cramer–Rao inequality in momentum
space is

〈p2〉Iγ � 4

(
1 − 2|m|

2L + 1

) (
L +

3

2

)2

. (24)

It is worth pointing out that the new lower bounds to both position and momentum
Cramer–Rao products (i) are equal to D2 for states s (i.e. with l = 0) and (ii) substantially
improve the D2-value given by (7) for general systems.

The expressions (20) and (21) together with the Stam uncertainty relations (6) allow us
to bound the kinetic energy T (= 〈p2〉/2) in both senses as

1

8
Iρ � T � 1

8

2L + 1

2L + 1 − 2|m|Iρ (25)

in terms of the position Fisher information, and the radial expectation value 〈r2〉 (which
is closely connected to numerous physical quantities such as, e.g., the Langevin–Pauli
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Ξi

D

Figure 1. Ratios �i, i = 1(+), 2(�) and 3(×), of the lower bounds and the Fisher product in
terms of the dimension D for the state with quantum numbers (n, l, m) = (1, 1, 1) of the harmonic
oscillator.

diamagnetic susceptibility [51] χ = −α2〈r2〉/6, with α being the fine structure constant)
as

1

4
Iγ � 〈r2〉 � 1

4

2L + 1

2L + 1 − 2|m|Iγ (26)

in terms of the momentum Fisher information.

6. Numerical study of the Fisher-information inequality

In this section, we have performed a comparison between the three Fisher-information-based
uncertainty relations (3), (5) and (22), in the two most important prototypes of D-dimensional
systems: the isotropic harmonic oscillator and the hydrogen atom. To facilitate our discussion,
let us introduce the ratios between each of the associated lower bounds and the corresponding
Fisher product IρIγ :

�i = Ki

IρIγ

� 1 i = 1, 2, 3.

where Ki ≡ Ki(l,m;D) are the lower bounds given by (3), (5) and (22), respectively. We
have numerically studied the dependence of these ratios on the dimensionality and on the
principal quantum number of the oscillator and hydrogen-like states.

6.1. Isotropic harmonic oscillator

The expressions of the Fisher informations in position and momentum spaces for the oscillator
potential V (r) = 1

2ω2r2 (mass = 1) are given by [35]

Iρ = 4

(
2n + l − |m| +

D

2

)
ω Iγ = 4

(
2n + l − |m| +

D

2

)
ω−1.

The behaviour of the ratio �i (i = 1, 2 and 3) as a function of the dimension D for the
state with quantum numbers (n, l,m) = (1, 1, 1) is shown in figure 1. For the three cases,
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(a)

Figure 2. Ratios �i, i = 1(+), 2(�) and 3(×), of the lower bounds and the Fisher product for
the harmonic oscillator state with l = m = 1 in terms of the principal quantum number n for
dimensions D = 3 (a) and D = 30 (b).

the ratio monotonically increases, i.e. the bounds improve, as D is augmented. For any given
dimensionality our results, given by (22), provide a significant improvement of the uncertainty
relations (3) and (5). Indeed �3 is much closer to the unity than �1 and �2 and it holds
�3 → 1 in the D → ∞ limit. The asymptotic trend is very different for the previously found
bounds; and, for a fixed set of quantum numbers (n, l,m), both satisfy �i → ( 2l−|m|

2l

)2
for

D → ∞, with i = 1 and 2. Note that only for levels with a vanishing magnetic quantum
number �1,2 → 1 for D → ∞, while for the state (1, 1, 1) analysed here �1,2 → 1

4 for large
D values.

Figures 2(a) and (b) present the ratio �i (i = 1, 2 and 3) for the states with rotational
and magnetic quantum numbers l = m = 1, as a function of the principal quantum number
n for D = 3 and D = 30, respectively. Fixing the angular symmetry of the states (i.e. l and
m) and the dimension D, the values of the bounds K1,K2 and K3 are also fixed, and only
the product IρIγ varies as n is increased. For the three cases, �i has a qualitatively similar
but quantitatively different behaviour as a function of n, monotonically decreasing as n is
enhanced. The inequalities worsen as the degree of excitation of the level is augmented, and
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10-2

10-1

1
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Ξi

D

Figure 3. Ratios �i, i = 1(+), 2(�) and 3(×), of the lower bounds and the Fisher product in
terms of the dimension D for the state with quantum numbers (n, l, m) = (2, 1, 1) of the hydrogen
atom.

in the n → ∞ limit �i → 0 for i = 1, 2 and 3. For D = 3, our new expression (22) shows a
less improvement with respect to the previous ones, as it is seen in figure 2(a). On the other
hand, the ratio �3 is reduced in more than three orders of magnitude for the considered states,
from �3 = 0.31 to 0.1 × 10−3 for the levels with n = 0 and n = 40, respectively. However,
for D = 30 the uncertainty relation (22) represents a significant enhancement with respect
to the previous results (3) and (5), as it is illustrated by figure 2(b). Indeed, this inequality
almost saturate, with �3 = 0.99 for the level with n = 0, decreasing thereafter. For the set
of considered states �3 is reduced by more than one order of magnitude, the highest excited
state considered with n = 40 has �3 = 0.025.

6.2. Hydrogen atom

The expressions of the Fisher informations in position and momentum spaces for the
hydrogenic potential, V (r) = −1/r , read [35]

Iρ = 4

η3
(η − |m|) Iγ = 2η2{5η2 − 3L(L + 1) − [8η − 3(2L + 1)]|m| + 1},

with η = n + (D − 3)/2
Figure 3 shows the behaviour of the ratio �i (i = 1, 2 and 3) as a function of the

dimension D for the level with quantum numbers (n, l,m) = (2, 1, 1) of the hydrogen atom.
These results resemble those presented for the harmonic oscillator, see figure 1. The three
lower bounds increase as the dimensionality of the system is enhanced. The improvement
provided by our results is clearly manifested in this graphic; indeed, �3 quickly reaches the
asymptotic behaviour for large D values, with �3 → 1 for D → ∞, i.e. the inequality (22)
saturates. The ratios �1 and �2 also approach

( 2l−|m|
2l

)2
on the D → ∞ limit, which is equal

to 1
4 for this state, being well below �3.

As a last example, we present for the hydrogenic levels with angular symmetry m = l = 1
the ratios �i , with i = 1, 2 and 3, as a function of the principal quantum number n for a
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Figure 4. Ratios �i, i = 1(+), 2(�) and 3(×), of the lower bounds and the Fisher product for
the hydrogenic state with l = m = 1 in terms of the principal quantum number n for dimension
D = 3.

three-dimensional system in figure 4. As for the oscillator case, the three bounds worsen as
the degree of excitation is enhanced and they approach zero in the n → ∞ limit. K3 slightly
improves the results given by K1 and K2. Again, �3 decreases in more than three orders of
magnitude for the considered levels, from �3 = 0.21 to 0.18 × 10−3 for the states with n = 0
and n = 40, respectively.

7. Conclusions

The Fisher-information-based uncertainty relation and the Cramer–Rao inequality for
D-dimensional particles moving in arbitrary central potentials have been best set up, see
(22) and (23)–(24), respectively. The lower bounds to the associated Fisher and Cramer–Rao
products are given by means of the orbital and magnetic hyperangular quantum numbers in a
simple and closed form. This has been possible because of the improvement of the Faris–Pitt–
Beckner inequalities for central potentials. On the other hand, the kinetic energy and the radial
expectation value 〈r2〉 are shown to be bounded not only from above (which is known due to
the Stam uncertainty relation) but also from below in terms of the position and momentum
Fisher informations and the hyperangular quantum numbers already mentioned, see (25) and
(26), respectively.

In addition, we have numerically investigated the accuracy of the Fisher-information-
based uncertainty relation (22) for the two most prominent D-dimensional prototypes: the
isotopic harmonic oscillator and hydrogen atom. Moreover, we have compared it to the
previously known results given by expressions (3) and (5). For all considered physical
situations, the new lower bound K3 is systematically better than K1 and K2, the improvement
factor being strongly dependent on the symmetry of the selected state and on the dimensionality
of the system. For all levels our inequality (22) saturates on the D → ∞ limit, i.e. K3 → IρIγ ,
while the asymptotic behaviour of the previous bounds strongly depends on the state under
consideration. The saturation is only attained for m = 0 levels. For a given dimension, with
the quantum numbers l and m fixed, the three bounds satisfy Ki → 0 with i = 1, 2 and 3 on
the n → ∞ limit.
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